7 research outputs found

    Single Channel ECG for Obstructive Sleep Apnea Severity Detection using a Deep Learning Approach

    Full text link
    Obstructive sleep apnea (OSA) is a common sleep disorder caused by abnormal breathing. The severity of OSA can lead to many symptoms such as sudden cardiac death (SCD). Polysomnography (PSG) is a gold standard for OSA diagnosis. It records many signals from the patient's body for at least one whole night and calculates the Apnea-Hypopnea Index (AHI) which is the number of apnea or hypopnea incidences per hour. This value is then used to classify patients into OSA severity levels. However, it has many disadvantages and limitations. Consequently, we proposed a novel methodology of OSA severity classification using a Deep Learning approach. We focused on the classification between normal subjects (AHI 30). The 15-second raw ECG records with apnea or hypopnea events were used with a series of deep learning models. The main advantages of our proposed method include easier data acquisition, instantaneous OSA severity detection, and effective feature extraction without domain knowledge from expertise. To evaluate our proposed method, 545 subjects of which 364 were normal and 181 were severe OSA patients obtained from the MrOS sleep study (Visit 1) database were used with the k-fold cross-validation technique. The accuracy of 79.45\% for OSA severity classification with sensitivity, specificity, and F-score was achieved. This is significantly higher than the results from the SVM classifier with RR Intervals and ECG derived respiration (EDR) signal feature extraction. The promising result shows that this proposed method is a good start for the detection of OSA severity from a single channel ECG which can be obtained from wearable devices at home and can also be applied to near real-time alerting systems such as before SCD occurs

    Deep Neural Networks with Weighted Averaged Overnight Airflow Features for Sleep Apnea-Hypopnea Severity Classification

    Full text link
    Dramatic raising of Deep Learning (DL) approach and its capability in biomedical applications lead us to explore the advantages of using DL for sleep Apnea-Hypopnea severity classification. To reduce the complexity of clinical diagnosis using Polysomnography (PSG), which is multiple sensing platform, we incorporates our proposed DL scheme into one single Airflow (AF) sensing signal (subset of PSG). Seventeen features have been extracted from AF and then fed into Deep Neural Networks to classify in two studies. First, we proposed a binary classifications which use the cutoff indices at AHI = 5, 15 and 30 events/hour. Second, the multiple Sleep Apnea-Hypopnea Syndrome (SAHS) severity classification was proposed to classify patients into 4 groups including no SAHS, mild SAHS, moderate SAHS, and severe SAHS. For methods evaluation, we used a higher number of patients than related works to accommodate more diversity which includes 520 AF records obtained from the MrOS sleep study (Visit 2) database. We then applied the 10-fold cross-validation technique to get the accuracy, sensitivity and specificity. Moreover, we compared the results from our main classifier with other two approaches which were used in previous researches including the Support Vector Machine (SVM) and the Adaboost-Classification and Regression Trees (AB-CART). From the binary classification, our proposed method provides significantly higher performance than other two approaches with the accuracy of 83.46 %, 85.39 % and 92.69 % in each cutoff, respectively. For the multiclass classification, it also returns a highest accuracy of all approaches with 63.70 %
    corecore